Computing Like the Brain: The path to machine intelligence

NASA

September 17, 2013
Jeff Hawkins
jhawkins@numenta.com

- 1) Discover operating principles of neocortex
- 2) Build systems based on these principles

Artificial Intelligence - no neuroscience

Alan Turing

"Computers are universal machines"

"Human behavior as test for machine intelligence"

1935+

1950

Major AI Initiatives

- MIT AI Lab
- 5th Generation Computing Project
- DARPA Strategic Computing Initiative
- DARPA Grand Challenge

AI Projects

- ACT-R
- Asimo
- CoJACK
- Cyc
- Deep Blue
- Global Workspace Theory
- Mycin
- SHRDLU
- Soar
- Watson
- Many more -

Pros: - Good solutions

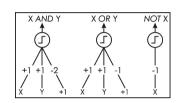
Cons: - Task specific

- Limited or no learning

Artificial Neural Networks – minimal neuroscience

Warren McCulloch Walter Pitts

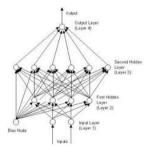
"Neurons as logic gates" 1943 Proposed first artificial neural network

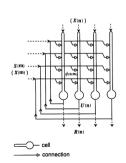




ANN techniques

- Back propagation
- Boltzman machines
- Hopfield networks
- Kohonen networks
- Parallel Distributed Processing
- Machine learning
- Deep Learning





Pros: - Good classifiers

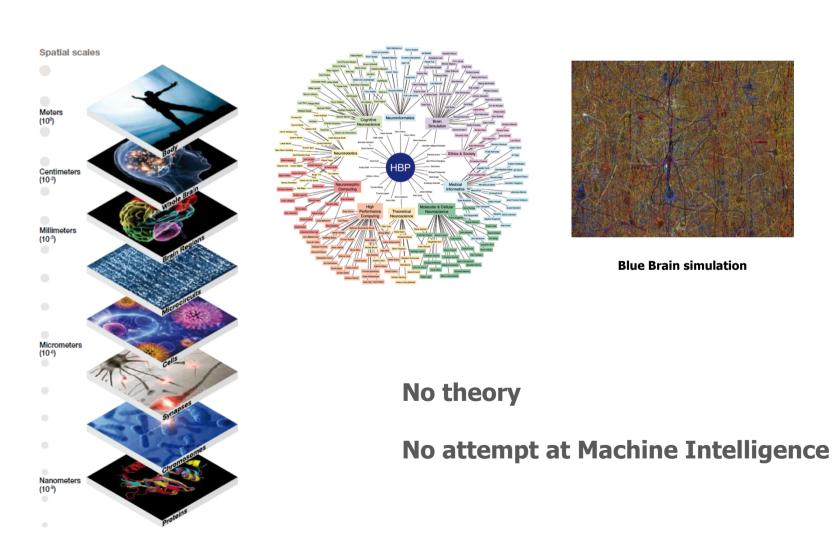
- Learning systems

Cons: - Limited capabilities

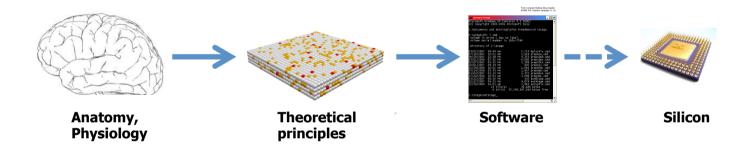
- Not brain like

Whole Brain Simulator – maximal neuroscience

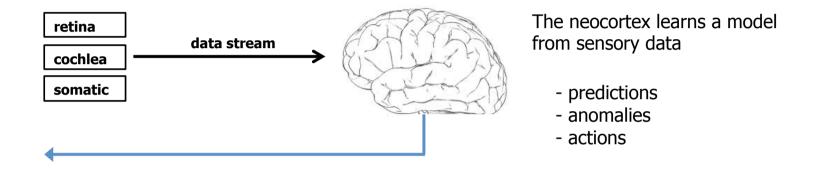
The Human Brain Project



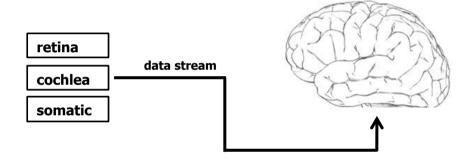
- 1) Discover operating principles of neocortex
- 2) Build systems based on these principles

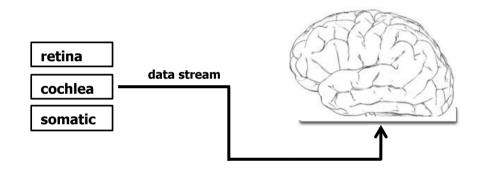


The neocortex is a memory system.

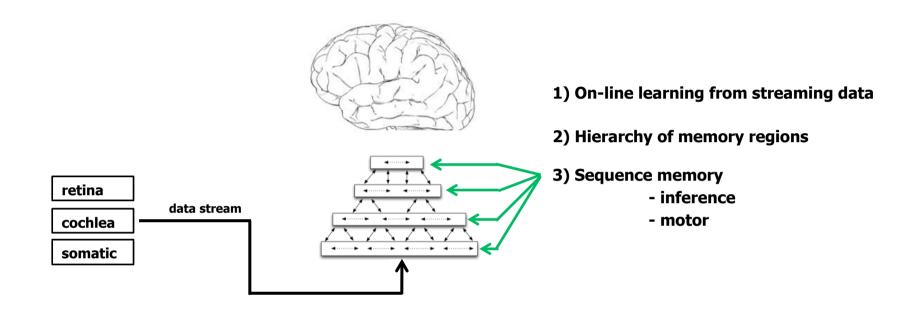


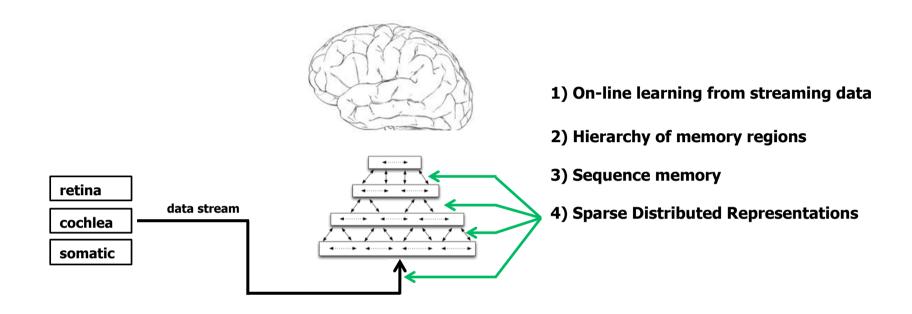
The neocortex learns a sensory-motor model of the world

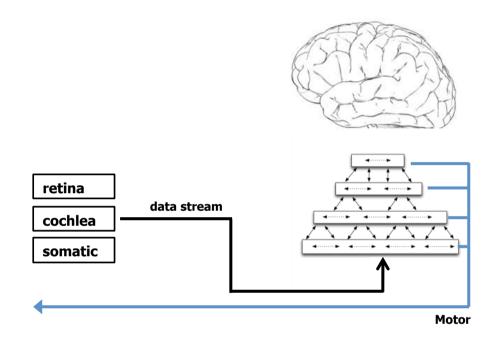




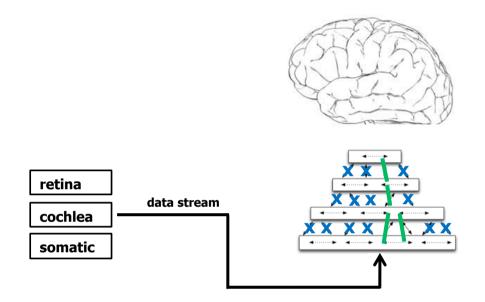
- 1) On-line learning from streaming data
- 2) Hierarchy of memory regions



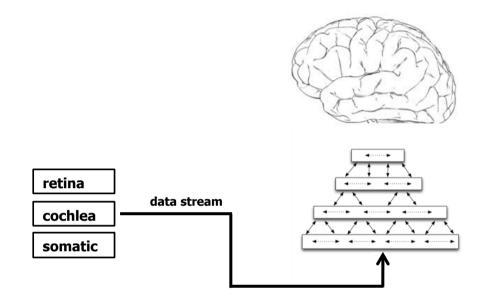




- 1) On-line learning from streaming data
- 2) Hierarchy of memory regions
- 3) Sequence memory
- **4) Sparse Distributed Representations**
- 5) All regions are sensory and motor



- 1) On-line learning from streaming data
- 2) Hierarchy of memory regions
- 3) Sequence memory
- 4) Sparse Distributed Representations
- 5) All regions are sensory and motor
- 6) Attention



- 1) On-line learning from streaming data
- 2) Hierarchy of memory regions
- 3) Sequence memory
- 4) Sparse Distributed Representations
- 5) All regions are sensory and motor
- 6) Attention

These six principles are necessary and sufficient for biological and machine intelligence.

- All mammals from mouse to human have them
- We can build machines like this

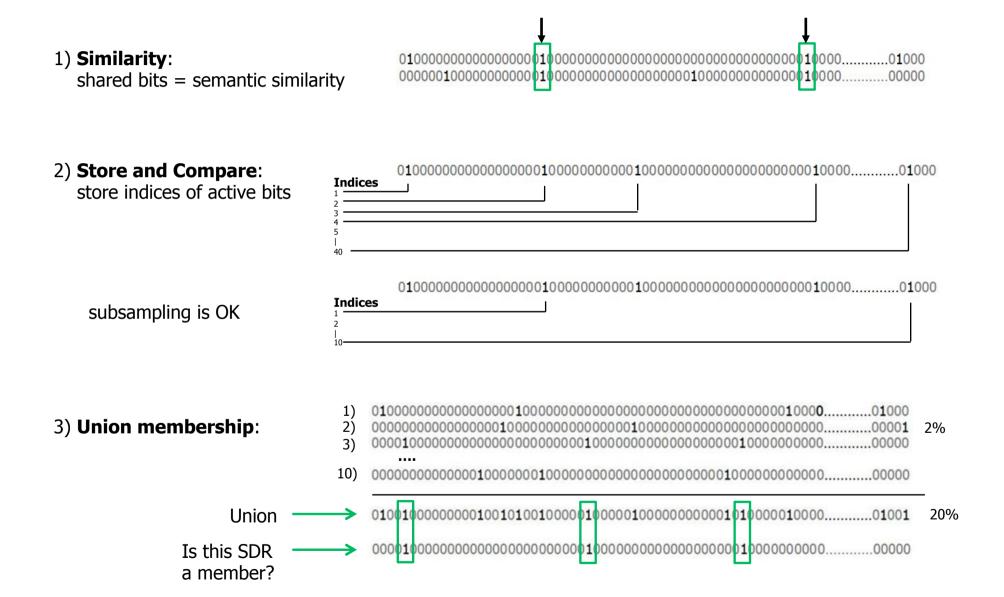
Dense Representations

- Few bits (8 to 128)
- All combinations of 1's and 0's
- Example: 8 bit ASCII 01101101 = m
- Individual bits have no inherent meaning
- Representation is assigned by programmer

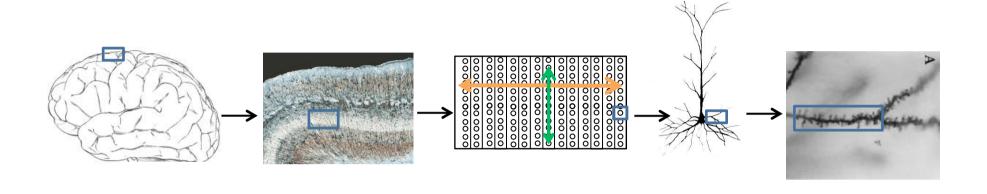
Sparse Distributed Representations (SDRs)

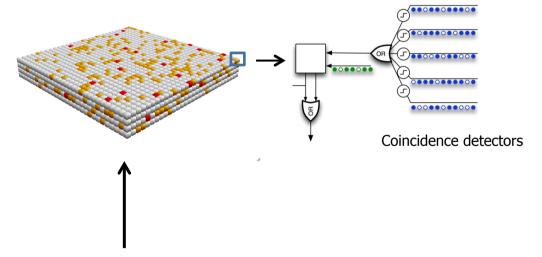
- Many bits (thousands)
- Few 1's mostly 0's
- Each bit has semantic meaning
- Meaning of each bit is learned, not assigned

SDR Properties



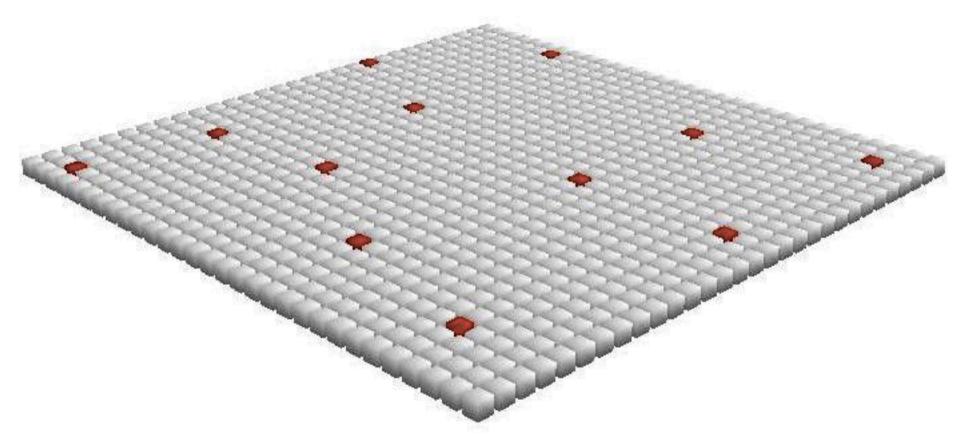
Sequence Memory (for inference and motor)





How does a layer of neurons learn sequences?

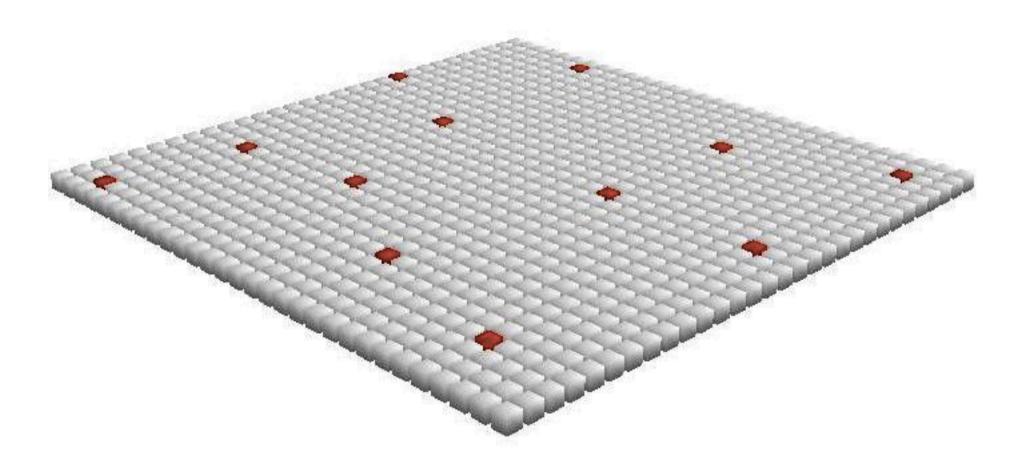
Each cell is one bit in our Sparse Distributed Representation



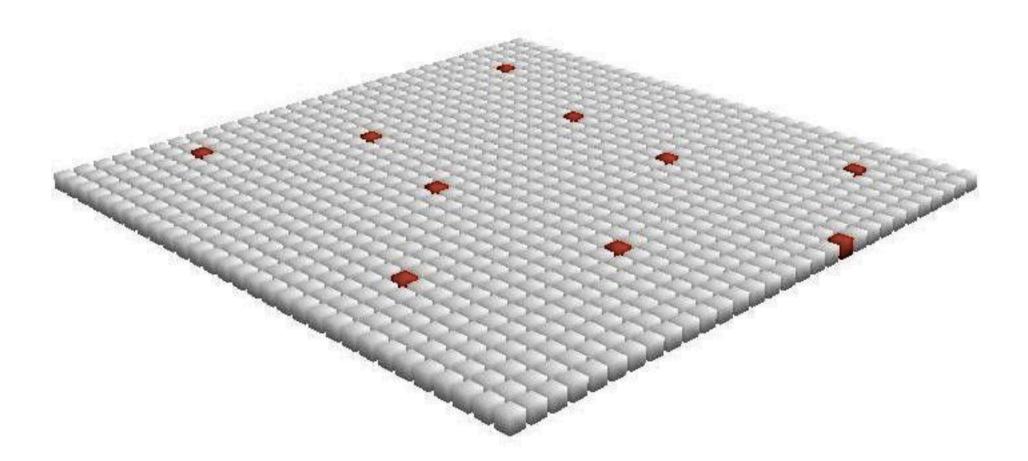
SDRs are formed via a local competition between cells.

All processes are local across large sheets of cells.

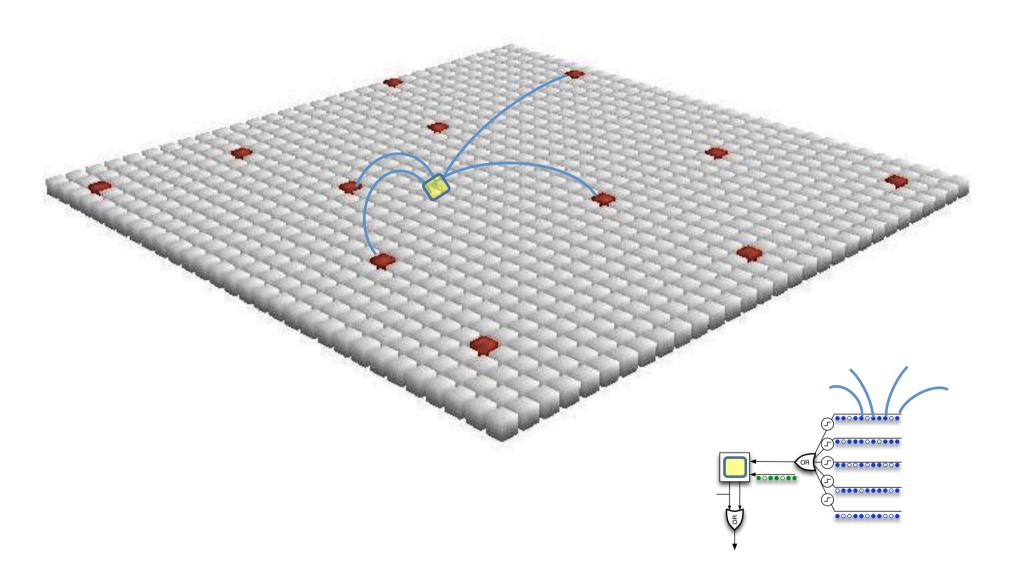
SDR (time =1)



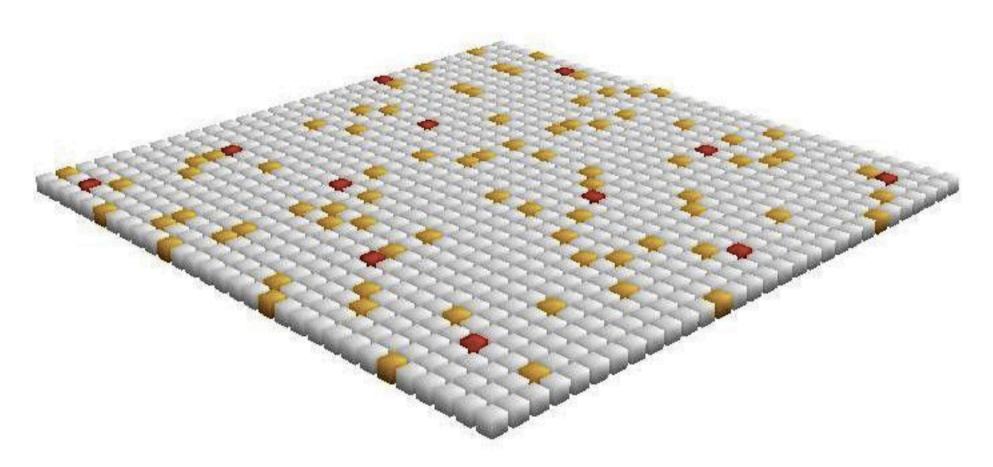
SDR (time =2)



Cells form connections to subsample of previously active cells. Predicts its own future activity.

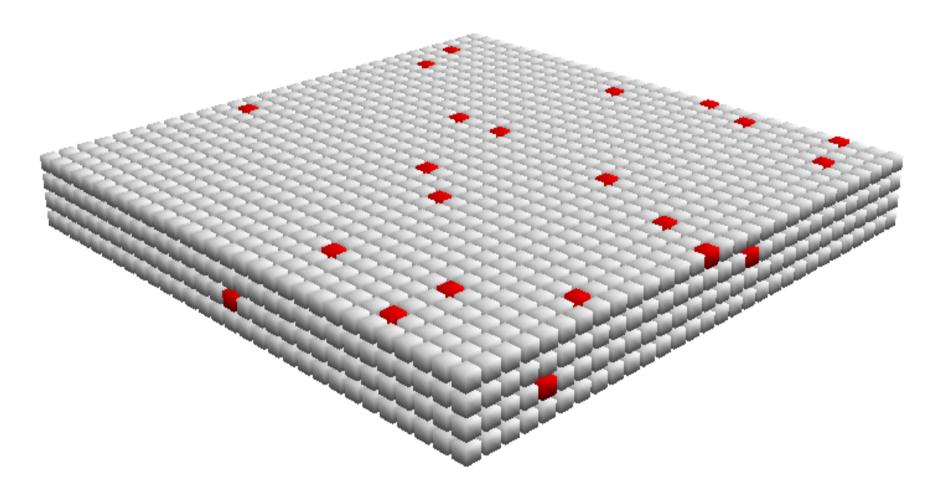


Multiple Predictions Can Occur at Once

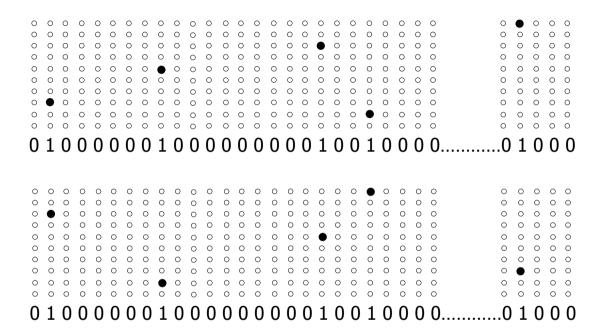


With one cell per column, 1st order memory We need a high order memory

High order sequences are enabled with multiple cells per column.



High Order Sequence Memory

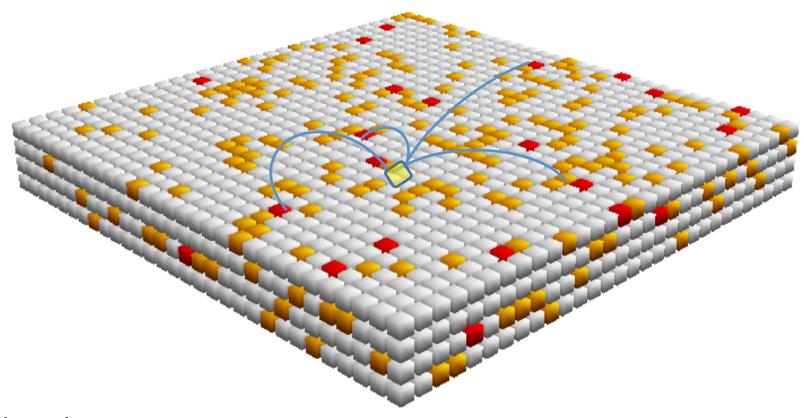


40 active columns, 10 cells per column

= 10⁴⁰ ways to represent the same input in different contexts

A-B-C-D-E X-B'-C'-D'-Y

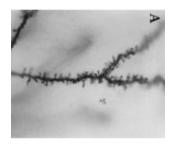
High Order Sequence Memory



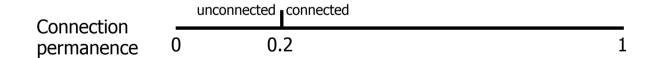
Distributed sequence memory
Works across large areas
High order, high capacity
Multiple simultaneous predictions
Semantic generalization

Online learning

- Learn continuously, no batch processing
- If pattern repeats, reinforce, otherwise forget it

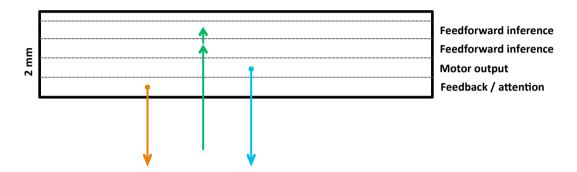


Learning is the growth of new synapses.

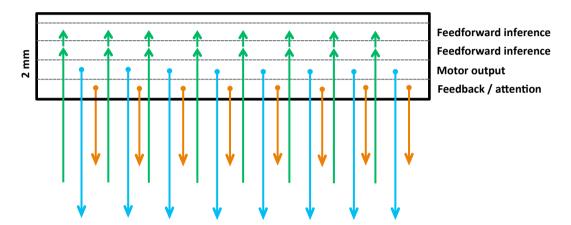


Connection strength is binary Connection permanence is a scalar Training changes permanence

Cortical Region



Cortical Region



Cortical Region

Ì	 sequence memory	CLA	Feedforward inference
₌ Î	 sequence memory	CLA	Feedforward inference
֓֞֞֞֞֞֞֞֞֩֓֡֞֞֩֓֓֓֓֡֓֡֓֓֡֓֡֓֡֓֡֓֡֡֡֡֡֡֡֡	 sequence memory	CLA	Motor output
Ī	 sequence memory	CLA	Feedback / attention

Evidence suggests each layer is implementing a CLA variant

Three Current Directions

1) Open Source Project

- NuPIC: CLA open source software and community
- Improve algorithms, develop applications

2) Commercialization

- GROK: Predictive analytics using CLA
- Commercial value generates investment \$

3) Custom CLA Hardware

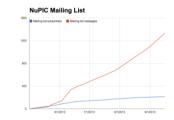
- Needed for scaling research and commercial applications
- IBM, Seagate, Sandia Labs, DARPA

NuPIC: CLA Open Source Project &&

www.Numenta.org

Single source tree (used by GROK) **GPLv3** license **Active community**

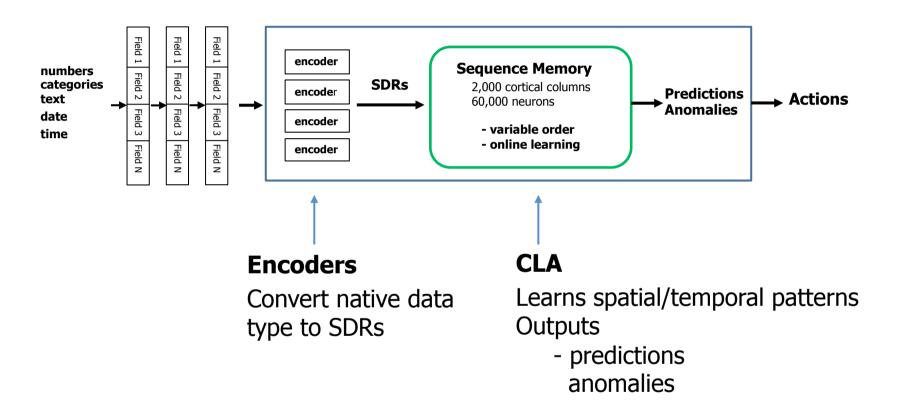
- 215 mail list subscribers
- 20 messages per day
- growing
- full time manager, Matt Taylor



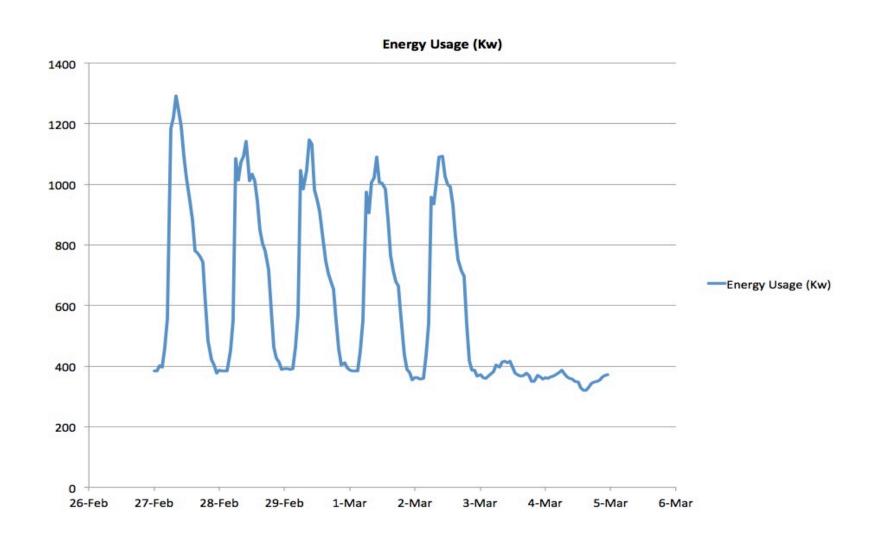
Next hackathon November 2 & 3 in San Francisco

- NLP using SDRs
- Sensory-motor integration using CLA discussion

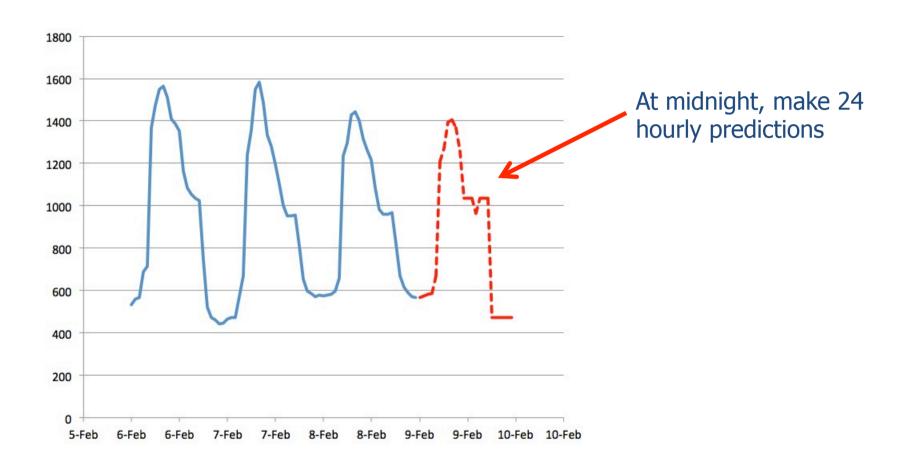
GROK: Predictive Analytics Using CLA



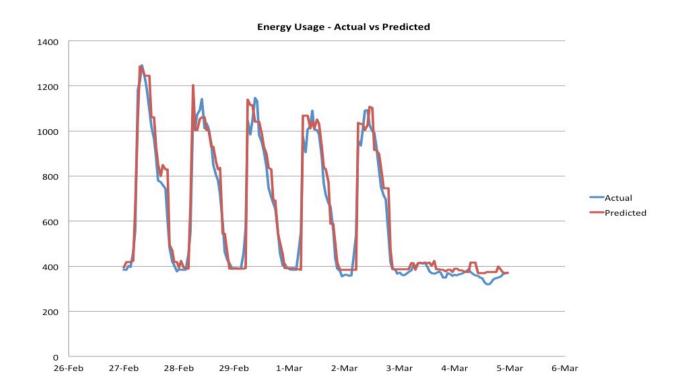
GROK example: Factory Energy Usage



Customer need



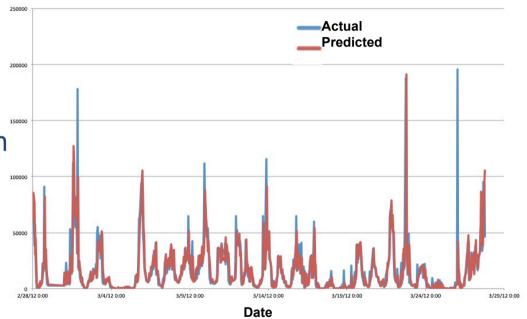
GROK Predictions and Actuals



GROK example: Predicting Server Demand

Grok used to predict server demand

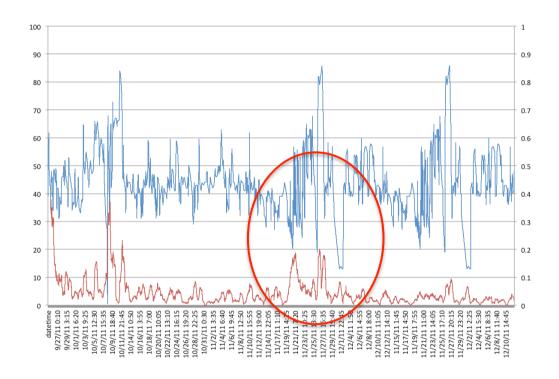
Approximately 15% reduction in AWS cost



Server demand, Actual vs. Predicted

GROK example: Detecting Anomalous Behavior

Grok builds model of data, detects changes in predictability.



Gear bearing temperature & Grok Anomaly Score

GROK going to market for anomaly detection in I.T. 2014

Custom CLA Hardware

IBM

- Almaden Labs
- Joint research agreement
- Winfried Wilcke

DARPA

- "Cortical Processor"
- "HTM" (Hierarchical Temporal Memory)
- CLA is prototype primitive
- Dan Hammerstrom

Seagate Sandia Labs

Future of Machine Intelligence

Future of Machine Intelligence

Definite

- Faster, Bigger
- Super senses
- Fluid robotics
- Distributed hierarchy

- Humanoid robots
- Computer/Brain interfaces for all

Not

- Uploaded brains
- Evil robots
- Friendly uses only

Why Machine Intelligence?

Live better

Learn more

Thank You